Velodyne[®] LiDAR

Application Note VLP-16: Packet Structure & Timing Definition

Definitions

• Firing Sequence

- The time and/or process of cycle-firing all the lasers in a VLP-16.
 - Firing sequence = 55.296 µs to fire all 16 lasers

Laser Channel

- A single 905 nm laser emitter and detector pair.
- Each laser is fixed at a particular elevation angle relative to the horizontal plane of the sensor.
- The elevation angle of a particular laser channel is given by its location in the data packet.
- Data Point (3 bytes) from a single firing from a laser
 - Two (2) bytes of distance.
 - One (1) byte of calibrated reflectivity.

• Data Block (100 bytes)

- Two-byte flag (xFFEE)
- Two-byte azimuth
- 32 Data Points (96 bytes)

Data Packet

- 42 bytes of header
- 12x Data Blocks
- Four-byte timestamp
- Two-byte factory field

Return Modes

- Strongest (Default) = The strongest (by light energy) return is reported
- Last = The last (temporally) return detected is reported
- Dual = Both the Strongest and Last returns are reported

Velodyne[®] LiDAR

Single & Dual Returns

Multiple Returns Explained I

- The footprint of the laser beam increases as it gets farther from the LiDAR sensor. This is known as beam divergence.
- The beam divergence of the VLP-16 is 3 mradians.

Velodyne[®] LiDAR

Multiple Returns Explained II

5

Velodyne LiDAR

Multiple Returns Explained III

Velodyne[®] LiDAR

Multiple Returns Explained IV

Velodyne[®] LiDAR

www.velodynelidar.com

Multiple Returns: Forestry Application

- In aerial LiDAR surveys, the last return is used to identify the ground.
- The other returns come from the tree as the beam traverses through all the tree branches.

Velodyne[®] LiDAR

Dual Returns in VeloView

Velodyne[®] LiDAR

Packet Structures

VLP-16 Packet Structure

- The information from 2 Firing Sequences of 16 lasers is contained in one (1) Data Block.
- Each packet contains the data from 24 Firing Sequences.
- Only a single azimuth is returned per Data Block.
- If **Dual Return** mode is enabled, twice as many packets are returned.
 - Throughput increases from ~8.6 Mbps to ~17.2 Mbps.
- Each Firing Sequence time is 55.296 μs to fire all 16 lasers.

VLP-16 Vertical Angle Mapping per Laser Channel

- The channel number maps to the vertical angle in degrees relative to the horizontal plane of the VLP-16.
- To find the elevation point of a specific laser, your software should use the channel number as an index into the lookup table to the right.

VLP-16 Channel #	VLP-16 Vert Angle (°)				
0	-15°				
1	1°				
2	-13°				
3	-3°				
4	-11°				
5	5°				
6	-9°				
7	7°				
8	-7°				
9	9°				
10	-5°				
11	11°				
12	-3°				
13	13°				
14	-1°				
15	15°				

Velodyne[®] LiDAR

Data Block Structure in Single Return Mode

User can select Strongest or Last Return

42 Bytes	12*(2 byte	es flag+2 bytes azi	muth+32*(2 bytes	distance + 1 byte	e reflectiv	ity)) = 1200 bytes	5	4 + 2 = 6 bytes
					l			
Header	Data Block 1	Data Block 2	Data Block 3	Data Block 4		Data Block 11	Data Block 12	Timestamp Factory
42 Bytes	Flag xFFEE	Flag xFFEE	Flag xFFEE	Flag xFFEE		Flag xFFEE	Flag xFFEE	Four Bytes 2 Bytes
	Azimuth N	Azimuth N+2	Azimuth N+4	Azimuth N+6		Azimuth N+20	Azimuth N+22	
	Channel 0 Data	Channel 0 Data	Channel 0 Data	Channel 0 Data		Channel 0 Data	Channel 0 Data	Timestamp:
	Channel 1 Data	Channel 1 Data	Channel 1 Data	Channel 1 Data		Channel 1 Data	Channel 1 Data	Microseconds since top of the hour (synced w GPS every sec). Represents the time of the first firing of the first firing sequence.
	Channels 2 - 13 Data		Channels 2 - 13 Data	Channels 2 - 13 Data				
	Channel 14 Data	Channel 14 Data	Channel 14 Data	Channel 14 Data		Channel 14 Data	Channel 14 Data	
	Channel 15 Data	Channel 15 Data	Channel 15 Data	Channel 15 Data		Channel 15 Data	Channel 15 Data	
Azimuth N+1 is not	Channel 0 Data	Channel 0 Data	Channel 0 Data	Channel 0 Data		Channel 0 Data	Channel 0 Data	
reported. The user must	Channel 1 Data	Channel 1 Data	Channel 1 Data	Channel 1 Data		Channel 1 Data	Channel 1 Data	
interpolate the azimuth for the second firing sequence in each data block	Channels 2 - 13 Data		Channels 2 - 13 Data	Channels 2 - 13 Data	13			
DIOCK.	Channel 14 Data	Channel 14 Data	Channel 14 Data	Channel 14 Data		Channel 14 Data	Channel 14 Data	
	Channel 15 Data	Channel 15 Data	Channel 15 Data	Channel 15 Data		Channel 15 Data	Channel 15 Data	elodyne [,] LiDAF

Use of Factory Bytes

Data Block Structure in Dual Return Mode

Data Blocks Alternate Between Last and Strongest (or 2nd Strongest) Return

Velodyne[®] LiDAR

www.velodynelidar.com

Interpolation of Azimuths

- Consider a single data packet.
- The time between the 1st Firing Sequence of the 1st set of 16 lasers firing and the 1st Firing Sequence of the 3rd set of 16 lasers firing is ~110.6 μs.
- If you assume the rotation speed over that short time interval is constant, then you can assume the azimuth of the (N+1) set of 16 laser firings is halfway between the azimuth reported with the Nth set of 16 laser firings and the azimuth reported with the (N+2) set of laser firings.

Example of Interpolation of Azimuth

- Below is pseudo code that performs the interpolation.
- The code checks to see if the azimuth rolled over from the 359.9° to 0° between firing sets N and N+2. In the example below, N = 1.

```
If (Azimuth[3] < Azimuth[1])
    Then Azimuth[3]:= Azimuth[3]+360°;// Adjust for a rollover from 359.99° to 0
Endif;
Azimuth[2]:=Azimuth[1]+( (Azimuth[3]-Azimuth[1])/2 ); // Interpolation
If (Azimuth[2]>360)
    Then Azimuth[2]:= Azimuth[2]-360°; // Correct for any rollover over from 359.99° to 0
Endif
```

Round(Azimuth[2], 2 decimal places); // User might to round or truncate the computed azimuth

Velodyne[®] LiDAR

VLP-16

Precise Data Point Timing

Precision Data Point Timing

- Each packet has one timestamp representing the first firing of the packet.
- For increased accuracy, you can calculate a timestamp for each individual laser firing.
- Remember, the data points in each block are recorded in the order which the lasers are fired.
- In Dual Return Mode, the computed timestamps for the corresponding strongest and last returns are equal.

Data Timing Breakdown

- Single VLP-16 Firing Sequence (16 lasers) = 55.296 μs.
- The 55.296 μs sequence time breaks down as:
 t_{SEQUENCE} = (16 · 2.304 μs) + 18.432 μs [recharge cycle]
- The time to accumulate one data packet is:
 - t_{DATA_PACKET} = 55.296 µs/data block · 24 data blocks/packet = 1.327 ms/packet

Calculating the Time Offset

- Step 1:
 - Number the data points in the firing sequence 0 to 15 (Data Point Index).
 - Remember:
 - There are 2 Firing Sequences per Data Block.
 - 24 Firing Sequences per packet.
 - Number the Firing Sequences 0 to 23 (Sequence Index)
- Time Offset = (55.296 μ s · Sequence Index) + (2.304 μ s · Data Point Index)
- Example:
 - Time Offset = $(55.296 \,\mu s \cdot 23) + (2.304 \,\mu s \cdot 15)$

= 1,306.37 μs

Velodyne[®] LiDAR

www.velodynelidar.com

Timing Offset Calculation in VLP-16

Velodyne[®] LiDAR

www.velodynelidar.com

 345 Digital Drive, Morgan Hill, CA 95037
 Tel: 408.465.2800 (Main Office)
 Tel: 408.465.2819 (LiDAR Sales)

 63-9276 Rev C